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By Lemma 1, the kissing number can be upper bounded by
7, < 2M0401+o) making our bound, F, < 270401 +eM) 4 signif-
icant improvement in tightness over the previously known bounds
mentioned above. The essential difference between our bound
and the weaker one of Stone and Rogers is that theirs is based
on a minimal covering while ours is based on a maximal packing.

Theorem 1: The maximum number of points in #” which can
have a common nearest neighbor is equal to the maximum
kissing number (e, F, = 7,), and is thus bounded as
2020751400 < < pO401+0(1),

Proof: Consider any set of 7, nonoverlapping spheres which
are tangent to a common sphere. The centers of these 7,
spheres each have the center of the common sphere as a
common nearest neighbor. Hence F, > 7, and it remains to
show F, < 7,.

Suppose there exist k > 7, points a;,':*, @, which have the
common touching point 8. Let d,, = min{d, : 1 <i < k}, where
d, = fle; — Bl for each i = 1,2,--, k, and define

d, —d, d, (
= ——B+ —a,
Vi 7. B 2, 4)
It is casily seen that
dm
Iy, — Bll = d—l\ai—Bll=d,,,. (€))

The points 7y, -, y, lie on a sphere in %" of radius
d,, and centered at B. Therefore, in the code {8, vy, Y25 " Y
each v; is a touching point of B with touching distance d,,,.

We now show that for all i and j, if i # j, then ||y, — vl 2 d,,..
Without loss of generality, suppose that i and j are indexes such
that

le; — Bll < lley — Bl < lle; — . 6)
Then
2(a; — B)-(a; — B)
=lle; - BI* + lle; — BIP —lle; — 01,-||2
<d; <d,d,. @)
But

2
m

d,d

2(7i_B)'(7j_B)= (a;—ﬁ)'(aj—ﬁ) ®)

o, %a;
by the definition of y; and v;.
Hence,
20y, = B (y; = B) < dp, ©)
and

ly; = w1 = lly, = BIZ + lly, = BI?
=2y = B)(y,— B)

>d% +d% - di = d7. (10)
Hence, in the code { B, vy, ¥2,***, ¥}, the point B has touching
number k that exceeds 7,. However, then k nonoverlapping
spheres of radius d,,/2 could be placed about each touching
point of B, violating the kissing number bound for the sphere
centered at B of radius d,,/2. This completes the proof. The
required bounds on F, then follow from Lemma 1. O
Theorem 2: The average touching number of any Euclidean
code in &#" is less than or equal to the maximum kissing number

(ie, T < 7,), and thus is upper bounded by 2401+,
Proof: Given a Euclidean code, the directed nearest-neigh-
bor graph associated with the code is defined in the following
manner. Let each vertex correspond to a particular codepoint. A
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directed edge goes from vertex a to vertex B if B is a touching
point of a. (If « is also a touching point of B, then there is
another directed edge from B to a.)

From Theorem 1, it follows that the nearest-neighbor graph of
any Euclidean code with M > 1 codepoints has the property
that each vertex has at most 7, incoming edges. Hence the total
number of edges in the graph cannot exceed M, (at most linear
in the number of vertices) and consequently the total number of
outgoing edges from all vertices is also at most Mr,. Therefore
the average touching number T, being the average number of
outgoing edges from a vertex, is bounded above by 7,. The upper
bound then follows from Lemma 1. m]
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any codeword, the algorithm does not always declare a decoding failure.
For a t-error-correcting BCH code, if the received vector is at distance i,
i <t from a codeword in a supercode with BCH distance ¢ + i + 1, the
decoder will output that codeword from the supercode. If that codeword
is not a member of the f-error-correcting code, then decoder malfunction
is said to have occurred. We describe the necessary and sufficient
conditions for decoder malfunction, and show that malfunction can be
avoided in the PGZ decoder by checking ¢ — v equations, where v is the
number of errors hypothesized by the decoder. A formula for the
probability of decoder malfunction is also given, and the significance of
decoder malfunction is considered for PGZ decoders and high-speed
Berlekamp-Massey decoders.

Index Terms—Decoder malfunction, bounded-distance decoding, BCH
coding, Reed—Solomon coding, Peterson-Gorenstein—Zierler algorithm.

I. INTRODUCTION

A t-error-correcting bounded distance decoder decodes a
received vector r into the unique codeword ¢ at distance within
distance ¢ from r (if such a ¢ exists), or declares failures if r is
at distance greater than ¢ from every codeword. It was generally
believed that the well-known decoding algorithms for BCH
codes, namely, the Peterson—Gorenstein—Zierler (PGZ) algo-
rithm, the Berlekamp-Massey algorithm, and the
Sugiyama-Kasahara—Hirasawa—Namekawa (SKHN) Euclidean
algorithm [1]-[4], were bounded-distance decoding algorithms.
However, Sarwate and Morrison [5] showed that PGZ and

SKHN algorithms, along with the high-speed version of the -

Berlekamp—Massey algorithm, are subject to decoder malfunc-
tion, which they defined as the event in which the decoder does
not declare failure when the received vector is not within the
decoding sphere of any codeword, but instead produces some-
thing that is not a codeword at all. In this paper, we give a
necessary and sufficient condition for malfunction in the PGZ
decoder, and show that this malfunction can be avoided by
checking ¢ — v equations, where v is the number of errors
hypothesized by the PGZ decoder. This test for avoiding mal-
function was first obtained by Diir [6] using deep results from
invariant theory of binary forms, but our proof uses only ele-
mentary linear algebra and is much simpler. The probability of
decoder malfunction is then given for Reed—-Solomon codes in
order to evaluate the necessity of implementing the checks
needed to avoid malfunction.

I1. A NECEssARY AND SUFFICIENT CONDITION FOR
DECODER MALFUNCTION

Let V,(x) denote the set of vectors within Hamming distance
t from the vector x, and consider a code & with minimum
distance d > 2t + 1. Then a t-error-correcting bounded dis-
tance decoder for € will output a codeword ¢ € # if and only if
the received vector r is in V,(¢). If r is not in V,(¢) for any
¢ € &, the decoder declares failure, i.c., it indicates that there is
no codeword within distance ¢ from r. Let @V denote a
t-error-correcting BCH code over GF (¢) whose generator poly-
nomial has zeros «, a?,--+, @ If ¢(x) is the transmitted code-
word, e(x) is the channel error polynomial, and r(x) = ¢(x) +
e(x) is the received polynomial, then the PGZ algorithm de-
codes r(x) as follows [2], [4].

1) Compute the syndromes S; = r(a‘’) = e(a’) for 1 <i < 2.

2) Find the largest integer v < ¢ such that the matrix

s, S, s,
M, = S5 St
S, S S20-1

is nonsingular. Hypothesize that v errors have occurred.
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3) Solve the system
M,,[)&,,a )l,,fp"'s A1]T = _[SV+1’SV+2’.“’ SZ»]T

for the coefficients A, A,, -, A, of the hypothesized error loca-
tor polynomial.

4) Factor the error locator polynomial A(x) =1+ Ajx+
Ax? + - +A,x7 into A(x) = II_ (1 — X,x). Then X,
X,,-+, X, are the error locations.

5) Solve the system

X, X, - X\|[y s,
X2 Xx? X2 Y, S,
Xy X2 x\y, S,

for the error values Y, Y,,-, Y,

e

6) The hypothesized error pattern is now
e*(x) = Y x'o8 X1 4 Y, x'8 X2 4 .. +)/Vx]0gaX».

Correct the errors by subtracting e*(x) from r(x) to obtain
the corrected codeword.

If e = wile(x)] < ¢, then it is known that e*(x) = e(x), and
thus the PGZ decoder decodes the received vector correctly.
When e > t, the decoder may fail to decode r(x). If e > ¢ but
r € V(¢) for some codeword in # then the decoder will still
decode the received vector into a codeword, albeit erroneously.
Otherwise, the decoder will generally declare failure when

e the error locations found in step 4 are not v distinct nth
roots of unity,

e some of the error values found in step 5 are zero or do not
belong to the symbol field.

The phenomenon of decoder malfunction was studied by
Sarwate and Morrison [5] who obtained the following sufficient
condition for malfunction in PGZ decoders. Let @ = @'* 1 be
a t-error-correcting BCH code, and let #®~2*D denote the
(¢t — i)-error-correcting supercode of & whose generator poly-
nomial has roots «, a2,---, a? 2. Then, if r € V,_,,(¢), t = 2,
where ¢ € %72+ the PGZ decoder output is c. Since
#cg® D c .- c@@-2+D it may happen that ¢ € € also,
in which case the decoding is correct if e < ¢, and incorrect if
e > t. On the other hand, if ¢ € &, ie., if ce #% 2D - g,
then a decoder malfunction occurs.

The supercodes mentioned above have odd minimum dis-
tances 2t — 1,2t — 3,---,2t — 2|t/2] + 1, respectively. The re-
sult of Sarwate and Morrison holds for the codes with even
minimum distances 2¢ — 2,2t — 4,---,2¢ — 2|t/2| as well. These
are codes that can correct ¢ — i errors and detect ¢ —i+ 1
errors, i < t/2. If we combine the cases together, we obtain the
following proposition. Although our results hold for BCH codes
in general, we shall assume that we are using Reed-Solomon
codes.

Proposition 1: For a t-error-correcting Reed—Solomon code
% = @+ with minimum distance 2¢ + 1, if d(r, ¢) = i where
i<tand c € VD, the output of the PGZ decoder is ¢. If
¢ € gttt — @ then malfunction occurs.

Proof: If i =1t in the above statement, then the received
vector is within the decoding sphere of a codeword in @ so the
decoder will output that codeword as expected and we do not
have a malfunction. But suppose that for i <t — 1,d(r,c) =i
where ¢ € 297"V, Let us consider what would happen if r
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were decoded using the decoder for #¢*/*D. From the point of
view of the decoder for #¢**D it is as though i errors have
occurred. Now the code @9+ can correct [(¢ + i)/2] errors
and can detect [(¢ + §)/2] errors, so r is within the decoding
distance of #¢*** ", The decoder for ¢*'*1 will examine the
matrices My, y/21s Mi+y/21-1>"*"» My and find them to be
singular, but will find M; to be nonsingular, and thus would

hypothesize that i errors have occurred. It would then solve
MilA, Aoy, /\1]T = =[S0, Sie2 SZi]T

for the A’s and proceed to decode r into c.

Since d(r,c¢) = i and the code has minimum distance ¢ + { +
1, it follows (see [4]) that the following ¢ + i — i =t equations
hold:

SiA+ Siihing o S A+ 8, =0, l<j=t.
Setting j = 1,2,---,¢ in the above equations gives
§y S S; A; =Sis1
Sy S8 Siv1 Aiy _ =Sis2
S, Sit1 Si+l—l Ay _Si-H

These ¢ equations show that the (i + Dth row of M, is a linear
combination of the first i rows of M,, and therefore, M,,
M, ;- M, , are all singular. The matrices M, M,_ 4, ,
M, iy/21+:1 are not examined by the decoder for #¢*** ", but
they are examined by the decoder for our original code #. The
decoder for @ finds M,, M, 1", My iy 2141 Migaipyap*
M., to be singular and M; to be nonsingular. Thus, the
decoder hypothesizes that i errors have occurred and goes
through the same steps as the decoder for ¢*/* 1, thereby
decoding r into ¢, a codeword in VT D If ¢ € & as well, the
decoder succeeds in producing a valid codeword, whereas if
¢ & &, malfunction occurs. ]

It has been pointed out in [5] that the PGZ algorithm mal-
functions in this way because not all of the syndrome values are
used, ie., S, is not used in determining the hypothesized
number of errors v that have occurred (step 2), and if the
decoder hypothesizes that v < ¢, then §,, is never used in the
decoding process. One way to prevent malfunction from occur-
ring is to simply add a step at the end of the algorithm that
checks whether the output is a legitimate codeword. This would
involve checking 2¢ equations to see if the codeword has the
requisite roots.

Another way of preventing malfunction is to use the fact that
malfunction cannot occur if the 2¢ — v equations

SA + Sji Ay S, A+ S, =0,
1<j<2t-v

hold [5]. Let 7, denote the quantity S;A, + S;,14,
+ o 84,214 + 5,4, When the PGZ decoder hypothesizes
that v errors have occurred, it solves the system of v equations
in step 3 of the PGZ algorithm. Hence, the coefficients
Ai, Aoy A, are such that 7; equals zero for 1 <j<w. It
follows that malfunction can be avoided by checking that the
remaining 2t — 2v T, for v+ 1 <j <2¢t— v, are also zero.
Diir [6] has used deep results from the invariant theory of binary
forms to show that if the PGZ decoder hypothesizes that »
errors have occurred, then the coefficients A, A, -+, A, found in
step 3 are such that 7; equals zero for 1 <j < 1. Therefore, in
order to avoid malfunction, the decoder need only check that
the remaining 7, t+ 1 <j <2t — v, are zero as well. An
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alternative proof of Diir’s result using only elementary linear
algebra follows.

Proposition 2: If the PGZ algorithm hypothesizes in step 2
that v errors have occurred, then 7; = O for 1 <j <.

Proof: If v errors are hypothesized by the decoder, then
M} # 0 and |M,, | =M, ,| = -+ =|M,|=0. The PGZ de-
coder solves the system of v equations in step 3, so that 7; = 0
for 1 <j < v. We will show by induction that 7, = 0 for v + 1
<j <t as well. If we premultiply the matrix M, ; by the matrix

1 0 0 0
0 1 0 0
Av+1 = . B
0 0 1 0
A, A A1
we obtain
A S, S, S,e1
S, S Sor1 Siaz
M;k+l =AM, = :
S, S, S2u1 Sa,
T T, T, T,
S, S, S, St
S, 5 Spe1 Sie2
SV Sv+1 SZV_] S2V
(U U 0 T,

where the last line in the matrix follows from the fact that
T, = 0for 1 <j < v. We see that M, , is of the form

v

M, B
0 Tu+ 1

Hence, |M* | = |M,|T,, ,. But since A4,, is a lower triangular
matrix with determinant 1, we also have that |M}, | =
|A4,,IM,, | =IM,, | = 0. Therefore, |M,I|T,,; = 0, and since
|M,| # 0, it must be that 7, , = 0.

Similarly, we show that 7,,, =T, ; = -+ =T, = 0. Assume
that 7,,, = -+ =T,,;_, = 0 for some k < — v. We want to

show that T,,, = 0. If we premultiply the matrix M,,, by the

matrix
PVX(V+ k)
Au+k =

Qix v k)

where P,y (1) = (x,»0,5,) and the rows of Qpu,vi) are £
right cyclic shifts of [A,, A,_1,"*+, A1, 1,0,0,-+,0] of length v + &,
we obtain

ko
vtk Av+ka+k

Sl Sv Sv+1 Sv+k
S, Sau-1 Sy o Sanken
T, - T, T T,
Ty Toopor | Tax 0 Dok
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Sui Syik-1 Syik
M, . . .
Sz BRI Y P
= 0 0 T,
0 T Tk
0 . . . .
T - Toiok-2 Lok

where the zeros follow from the induction hypothesis that 7, ,
= -+ =T, =0. The matrix in the lower-right quadrant is
triangular with diagonal elements all 7, . Therefore,

IME | = IM,I(— DT, )",

Since A4,., is a lower triangular matrix with determinant 1,
{M* =14, M, .| =M, | = 0. Therefore,

M= D¥ 2T, ) =0,

and since |M,|+# 0, we must have 7,,, = 0. Thus, we have
shown that T, , = O for 1 <k <t — », i.e., we have shown that
I;=0forl <j<t m}

We now show that the sufficient condition for the malfunction
given in Proposition 1 is necessary as well. Consider the syn-
drome polynomial S(x) = £ ,S;x/~" and the error-evaluator
polynomial Q(x) = A(x)S(x)mod x?'. It is known that if a BCH
decoder decodes successfully and finds an error pattern of
weight v, then deg A = v and deg Q < v [2], [3], [5]. Using this
fact, we prove the following proposition.

Proposition 3: 1f the PGZ decoder malfunctions and outputs a
vector ¢ as the most likely transmitted codeword, then ¢ €
ZU*rv+D — @ where v is the number of errors hypothesized by
the PGZ decoder, and v <t — 1.

Proof: Suppose that the PGZ decoder malfunctions and
produces an output vector ¢ corresponding to an error pattern
of weight v and an error locator polynomial A(x) of degree v.
Then by Proposition 2, it must be that 7; = 0 for 1 <j < 1. Now,
it we consider the product A(x)S(x), which is a polynomial of
degree v+ 2t — 1, the coefficients of x*, x**1--, x>~ are
precisely T4,7,,--,T,,_,, respectively. Hence, we see that the
coefficients of x¥, x”*',---, x***~1 are zero. However, the coef-
ficients of x** x****1.... x2~1 cannot all be zero because if
they were, then A(x)S(x) = Q(x)mod x?, where deg Q < v,
and therefore by [5], malfunction could not have occurred.
Nonetheless, since the coefficients of x¥, x** 1, x***"! are
zero in the product A(x)S(x), we have that A(x)S(x) =
Q(x)mod x¥*' where deg ) < v. This corresponds to a success-
ful decoding for #“***V in which the decoder finds a codeword
c € @+ at distance » from r. Since decoder malfunction
did occur, it must be that ¢ € #¢***D — . Finally, note that if
v=1t,then T, = 0,--,T, = 0 are the coefficients of x’,---, x2* ™.
Therefore, A(x)S(x) = Q(x)mod x%, where Q(x) has degree
less than ¢, so malfunction cannot occur. Thus, we have shown
that if the PGZ decoder malfunctions with v errors and outputs
avector ¢,then c € ¢ **Y —@and v <t — 1. ]

Let us comment here that we have stated our results for
Reed-Solomon codes because @, @Y, .-+ are all distinct in
that case. The results are applicable to general BCH codes as
well, but they must be interpreted carefully because the codes
#@ @@=1 ... may not all be distinct in the general case. Also,
note that a special case of malfunction has been accounted for
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previously. Some implementations of the PGZ decoder declare
failure if the matrices M,, M,_,,~--, M, are all found to be
singular even though the syndromes are not all zero. If
M,,M,_,,--, M, are all singular, then the PGZ algorithm as
described above hypothesizes that » = 0 and finds A(x) = 1.
Therefore by Proposition 2, §; = S, = -+ = §, must be zero,
and the test for malfunction (does 7, =0 for t + 1 <j < 2¢ —
v?) reduces to checking whether S, ,S,.,,*", S, are zero,
which is essentially a check that is already performed in some
implementations of the PGZ algorithm.

As was pointed out in [5], Chen’s high-speed version of the
Berlekamp—Massey decoding algorithm [7] can malfunction be-
cause it achieves it high speed by not checking whether 7; = 0
for t + 1 <j < 2t — v. Proposition 2 essentially explains why
this decoding algorithm malfunctions. When this algorithm finds
a A(x) of degree v, it checks whether T,,,,,T,,,,, T, are all
zero, and if so, it does not check whether the remaining 7,
t+1<j<2t— v are also zero. Therefore, when the received
vector is at distance » from a codeword in ¢*** 1, the high-
speed decoder finds A(x) of degree v, and since Proposition 2
guarantees that 7, =0 for 1 <j <, the decoder skips the
remaining checks, and thus malfunctions in exactly the same way
that the PGZ decoder does. It follows that Propositions 1 and 3
are also applicable to Chen’s high-speed version of the
Berlekamp—Massey decoding algorithm.

III. Tue ProBABILITY OF DECODER MALFUNCTION

Because testing for malfunction does require additional hard-
ware or software instructions, it is of some practical importance
to evaluate the probability of decoder malfunction in order to
determine its significance in increasing the probability of incor-
rect decoding. In the previous section, we showed that malfunc-
tion occurs if and only if the received vector r is such that
d(r,e) =i, i <t—1, where ¢ € €¢*'*D — &, Equivalently,
since the code is linear, malfunction occurs if and only if the
error pattern e is such that d(e, ¢)=1i,i<t—1 where c €
FU*i+h) — @ Hence

t—1
P{malfunction} = P,,, = ) Pld(e,¢) =ilc € €V - 7]
i=0

t—1
= Y Pld(e,¢) =ile € €0 D) — Pld(e,c) = ilc € 1.
i=0

¢

In contrast, the probability of undetected error is given by

t
P,= Y Pld(e,c) =ilc € ¥V —0].
i=0

We assume that our g-ary (n, k) Reed—Solomon code € is used
on a discrete memoryless channel with g inputs and g outputs,
and that any transmitted symbol has a probability /(g — 1) of
being changed into each of the ¢ — 1 other symbols. Let A{® be
the number of codewords of weight ! in &‘®. The weight
enumerator polynomial for @ is A¥(z) = L1, Az Let us
also define B,(i, k) to be the number of vectors of weight k at
distance i from a given vector of weight /. Then the probability
that an error pattern is at distance i from a codeword in & is
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given by [2], [8]
Pld(e,c) = ilc € 9]
= Z Z (;)k(l — )" FADB i, k)
k=0i-0\q —1 ‘ PR R
Substituting this into (1), the probability of malfunction is

t—=1 n n € k B

Py T X Y (Sg)a-or
; -1
i=0k=01=0\9

.[A(It+i+l) —A(IZHU]B,(I',k). ?)

Since the weight enumerators of Reed—Solomon codes are
known, it is easy to compute P, for these codes. The weight
distribution of a length n RS code over GF(g) with minimum
distance d is given by [2], 31 A = 1, AD =0, for 1 <l <d -
1, and

1—d
A= (1) -0 E (' e e @
j=0

The quantity B,(i, k) can be computed for any values of /, i, and
k using the following formula [2]:

2 L))

O<v<n
n+2v+k=i+l

B,(i, k) =

(g-D" g -2". @

Using (2)-(4), P, can be evaluated for any Reed-Solomon
code over GF(g) used on a discrete memoryless channel with
symbol error probability €.

Since (4) is complicated to evaluate, simple bounds on P,
are of interest. When the symbol error probability € is very
small, a decoder error or malfunction occurs primarily because
of error patterns of weight t + 1. But for t + 1 <d <2t + 1,

there are error patterns of weight ¢ + 1 at distance

t+1
d — ¢ — 1 from a given codeword of weight d in ®, and there

are (Z)(q — 1) codewords of weight d in &®. Hence,

2t + 1 n
Pfa(z+1)(2t+1)(q_l)

and
2t
d n
I o\t 1)\d
Therefore,
P - ‘il =1t —1)
P, Son=200=2t+ 1) (n—2t+10)

as € approaches 0. The above sum is obviously bounded below
by the first summand 7/(n — 2¢) and can be bounded above by
the sum of a geometric series with ratio ¢t/(n — 2¢). If n > 3¢,
this ratio is less than one, and hence

t P.s t
<
n—2t P n— 3t

4

if n > 3t.

()

If n <3t it is easily seen that P, > P,. As an application of
(5), note that as €— 0, the ratio P, /P, for a (32,24)
Reed-Solomon code over GF(2°) lies between 1/6 and 1/5
(the actual value is 0.188), while for a (32,12) Reed-Solomon
code over GF(2°), P,,;/P, lies between 5/6 and S (the actual
value is 1.97).

i -

1653

IV. DiscuUsSION

The effect of malfunction on the performance of a decoder is
to increase the probability that the output vector of the decoder
is a vector other than the transmitted codeword. Thus, the
probability that the output is not the transmitted codeword
increases from P, to P, + P, ;. From (5), it appears that the
effective increase in error probability is small if ¢ is relatively
small compared to the block length n, but the increase can be
substantial for low rate codes. Now, the event of undetected
decodet error is not preventable, but the event of decoder
malfunction is very definitely preventable. However, checks to
avoid malfunction require additional hardware or software in-
structions, which increase the cost of implementation and the
running time. Therefore, as a practical matter, the system de-
signer must consider the tradeoff between reduction of the
probability of incorrect decoding and the cost of preventing
decoder malfunction.

The quantities P, and P, have been calculated exactly as
functions of the symbol error probability e for some Reed-
Solomon codes of blocklength 32 [9]. As expected from (5), P,
is comparable to P, for the lower rate codes and much smaller
than P, for the higher rate codes. Therefore, a noticeable
improvement in the probability of incorrect decoding may be
achieved in low rate codes if a check is included in the algorithm
to prevent malfunction. Of course, in practice, the PGZ algo-
rithm is typically used only for decoding high rate codes. In such
cases, P, is relatively small compared to P,, and hence the
additional expense of implementing checks to prevent malfunc-
tion may not be merited. However, as pointed out in Section II,
certain high-speed Berlekamp—Massey decoders malfunction in
exactly the same manner as the PGZ decoder because these
decoders omit certain checks, and these checks are precisely the
ones needed to detect cases of impending decoder malfunction.
Berlekamp—Massey decoders are typically used for low rate
codes, and since the computational burden increases with the
error-correcting capability, one would be most tempted to use
the high-speed version of the Berlekamp-Massey algorithm
when the code rate is low. This is exactly the situation in which
the malfunction probability is significant compared to the error
probability, and in which the tradeoff between decoding speed
and increase in the probability of incorrect decoding must be
given serious consideration.
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